Thursday, 26 February 2015

Probability Distributions


Find The Right Fit With Probability Distributions
By David Harper

Probability Distributions are pictures that describe a particular view of uncertainty. 

An emergent research view holds that financial markets are both uncertain and predictable. Also, markets can be efficient but also uncertain. In finance, we use probability distributions to draw pictures that illustrate our view of an asset return's sensitivity when we think the asset return can be considered a random variable. 

There are two ways of categorizing distributions: by whether it is discrete or continuous, and by whether it is a probability density function (PDF) or a cumulative distribution.


CT-ProbabilityDist_1r.gif

CT-ProbabilityDist_2r.gif


The PDF is P[x=X]; The cumulative distribution is P[x<=X]

UniformThe simplest and most popular distribution is the uniform distribution in which all outcomes have an equal chance of occurring.


CT-ProbabilityDist_3r.gif


CT-ProbabilityDist_4r.gif

Now roll three dice together, as shown in Figure 4. We start to see the effects of a most amazing theorem: the central limit theorem.

The central limit theorem boldly promises that the sum or average of a series of independent variables will tend to become normally distributed, regardless of their own distribution. Our dice are individually uniform but combine them and - as we add more dice - almost magically their sum will tend toward the familiar normal distribution! 


CT-ProbabilityDist_5r.gif

Binomial

The binomial distribution reflects a series of "either/or" trials, such as a series of coin tosses. These are called Bernoulli trials but you don't need even (50/50) odds. A Bernoulli trial refers to events that have only two outcomes. 

The binomial distribution below plots a series of 10 coin tosses where the probability of heads is 50% (p-0.5). You can see in Figure 6 that the chance of flipping exactly five heads and five tails (order doesn't matter) is just shy of 25%:


CT-ProbabilityDist_6r.gif

As the number of trials increase, the binomial tends toward the normal distribution.

LognormalThe lognormal distribution is very important in finance because many of the most popular models assume that stock prices are distributed lognormally. It is easy to confuse asset returns with price levels:
CT-ProbabilityDist_7r.gif


http://www.investopedia.com/articles/06/probabilitydistribution.asp




2 comments:

  1. Attractive section of content. I just stumbled upon your site and in accession capital to assert that pepperstone loginI acquire in fact enjoyed account your blog posts. Anyway I’ll be subscribing to your feeds and even I achievement you access consistently fast.

    ReplyDelete

  2. Do you believe in long term investement . One of the option of doing investement is by investing in Crypto currencies. You can invest in Fudxcoin company that deals in the selling and purchasing of Crypto Currency. It is a reliable company. One need not doubt in investing in it as i have also bought crypto currency from it and feeling very satisfied with their services.
    crypto currency block chain technology

    ReplyDelete